在进气过程中,柴油机进气道形成的涡流可以使得柴油和空气更好地混合,增加湍流强度和湍流动能,大大提高火焰传播速率,从而改善发动机的性能。通过模拟分析和试验方式来优化进气道和燃烧室,使其产生高的流量系数和涡流比,成为目前柴油机燃烧过程的关键技术之一。
进气道的三维数值模拟
1. 计算参数输入
此次计算气道所匹配的柴油机最大气门升程在9mm左右,为了全面掌握此机型进气道的性能指标,试验共采用9个气门升程工况点,其对应的气门升程值分别是1~9mm。模拟计算的工况点和试验工况点完全相同。
计算中假设流动是可压缩的,湍流模型选用k-ζ-f模型,与之匹配的壁面处理方式选择Hybrid Wall Treatment。
2. 数模和网格模型
本次计算域模型是参考AVL的稳流气道试验台得到的,气道的入口处增加了一个半球形的稳压腔,用于模拟大气环境,其直径为缸径的2倍,模拟气缸长度为缸径的2.5倍(见图1)。利用AVL Fire软件自带的Hybrid Assistant进行体网格划分。网格模型包括稳压腔、进气道和模拟气缸。主网格尺寸为2mm,并对进气道、气门座圈及气门等部位进行不同程度的加密处理。3. 边界条件
边界条件的设置参考了AVL气道试验台的实际试验工况。设置进气入口为总压边界,并设总压为1.0×105Pa。出口为静压边界,小气门升程(≤3mm)出口压力设为9.5×104Pa,进出口压差为5000Pa;大气门升程(>3mm)出口压力设为9.6×104Pa,进出口压差为4000Pa。进出口温度均为313K。其他表面设为壁面边界条件。4. 初始化条件
设置初始压强值p为9.9×10^4Pa,初始密度ρ为1.13kg/m3,温度为313K。
进气道试验
缸内涡流宏观研究测量方法即稳流气道试验台,主要包括叶片风速仪测量法(见图2)和涡流动量计法(见图3)。
图2 叶片风速仪测量法
图3中柴油机缸盖安装在试验台面上。起动风机,提供试验所需的压力源。进气道内的气流进入气缸内形成涡流。动量计测量涡流的强度。气道压差传感器、气门升程传感器、转矩传感器和流量计分别测量进气道压力差、气门升程、转矩值和流量值。然后将这些数据反馈给数据采集仪,通过计算机控制整个系统的正常运转。
图3 涡流动量计法
模拟与试验结果
1.流量系数和平均流量系数
本次计算的流量系数统计采用了国内比较通用的AVL方法。从流量系数分布图可以看出,流量系数模拟值曲线和试验值曲线趋势一致,均随着气门升程的增加而增大。在小气门升程下流量系数值增长趋势明显,随着气门升程的增加流量系数增长趋势变缓。在测试的最大气门升程工况点,流量系数的试验值达到0.67,该进气道的流量系数适中。进气道流量系数的试验值低于模拟值,这是由于模拟分析是在理想状况下进行计算的,而试验中涡流动量计等部件会存在一定的阻力,导致试验测得的流量系数偏低。
进气道平均流量系数模拟值和试验值分别为0.307和0.289。其模拟值高于试验值,这也与各个工况点下流量系数的模拟值与试验值趋势相一致。
2.涡流比和平均涡流比
涡流的稳态研究一般是在距缸头1.75倍缸径的面上以平行于气缸轴线的线为中心轴的一个旋流,定义为涡流。涡流比主要是依据在这个平面上速度的切向分量(与气缸轴平行的速度分量)计算出的。从涡流比分布图可以看出,涡流比模拟值和试验值随着气门升程的增加变化趋势一致,均是随着气门升程的增加而减小。在小气门升程时,涡流比值较高,这是由于小气门升程时,气流流通面积小,气门前后压力差大,导致气体流速高,缸内气流旋转速度大。随着气门升程的增大,涡流比逐渐减小。大气门升程时,涡流比相对较稳定。
进气道涡流比的试验值高于模拟值。这是由于涡流比和流量系数成反比,流量系数越大,涡流比越小。
前述流量系数模拟值高于试验值,所以涡流比模拟值小于试验值。
计算得到的进气道平均涡流比模拟值和试验值分别为1.98和2.12。其模拟值低于试验值,这也与各个工况点下涡流比的模拟值与试验值趋势相一致。
3.缸内气流
图4所示为典型的三种工况下缸内气流流动迹线图。红色椭圆内代表经左侧气门进入缸内的流动状况,红色箭头代表经右侧气门进入缸内的流动状况。
图4 典型的三种工况下缸内气流流线
结语
柴油机进气过程中形成的涡流对柴油机的性能有很大影响。本文通过结合模拟分析,结合试验对比两种方法对进气道性能的研究,得出以下结论:
(1)随着气门升程增加,流量系数与涡流比的各自模拟值与试验值的变化趋势均保持一致;
(2)流量系数模拟值稍大于试验值,而涡流比模拟值稍小于试验值;
(3)本柴油机的气门座圈倒角在小气门升程时对提高涡流比有明显作用,但在大气门升程时没有作用,需要优化气门座圈和气门结构。